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These are the slides I presented in a keynote at the 25th Eurographics

symposium on rendering in June 2014 in Lyon.

Many/most of the figures are from my work-in-progress book, ten chapters of

which are posted at statweb.stanford.edu/˜owen/mc

I have made a few changes to the slides, adding notes about things said aloud,

adding a few references, and making a few corrections.

It was a delightful meeting, socially and scientifically, and I am very grateful to

Wojciech Jarosz and Pieter Peers for inviting me and to Victor Ostromoukhov, the

local organizer.

-Art Owen, June 2014
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Sampling for graphics
• light travels from sources to retina/lens

• bouncing off of objects

• each pixel is an average over light paths

• sampling those paths fits naturally (at least since Kajiya (1988))

• and converges numerically

• Helmholtz: we can even sample the reversed paths
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Sampling challenges
• High or infinite dimensional integrands.

• Singular integrands.

• Lack of smoothness.

• Visual artifacts, despite good numerical accuracy

Rendering has all of these challenges.

June 26, 2014, Lyon
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Bidirectional research
• Start at a rendering problem, adapt sampling ideas, or,

• Start at a sampling idea, adapt it to rendering, or,

• Start at both ends, and meet in the middle
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Research path occlusion
• computational cost

• unforeseen nastiness of the integrand

• unforeseen visual artifacts

• patents

A lot can go wrong between idea and implementation. It is hard to see around

corners. This talk shows some sampling ideas, old and new, selected for their

potential to be useful in sampling.
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A tour of some sampling ideas
1) MC Monte Carlo

2) QMC Quasi-Monte Carlo

3) RQMC Randomized Quasi-Monte Carlo

4) MCMC Markov chain Monte Carlo

5) MLMC Multilevel Monte Carlo

Additionally

1) New multiple importance sampling method

2) New low discrepancy sampling in the triangle

3) New results for Hilbert curve sampling

Important but omitted

Sequential Monte Carlo Particle methods

Blue noise (Fiume & McCool, Ostromoukhov, Mitchell, Keller,· · · )
June 26, 2014, Lyon
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(Crude) Monte Carlo

We want µ ≡
∫
Rd
f(x)p(x) dx

We use µ̂ ≡ 1

n

n∑
i=1

f(xi), xi
iid∼ p

Computationally

Get U[0, 1] random variables via Mersenne Twister (or other RNG)

Matsumoto & Nishimura (1988)

Turn them into samples from p

Devroye (1986)

June 26, 2014, Lyon
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Monte Carlo Properties
Law of large numbers

P
(

lim
n→∞

µ̂ = µ
)

= 1 if µ exists

Central Limit Theorem
√
n(µ̂− µ)

d→ N (0, σ2), if σ2 =

∫
(f(x)− µ)2p(x) dx <∞

Root mean square error E((µ̂− µ)2)1/2 = σ/
√
n

vs classic quadrature O(n−r/d) using r derivatives in d dimensions.

Good news

It is easy to estimate error

Competitive when dimension is high or smoothness low
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Monte Carlo problems/fixes
Accuracy may be too low

1) Quasi-Monte Carlo

2) Importance sampling

3) Other variance reductions

For InDevroyable∗ distributions

1) Markov chain Monte Carlo

2) Multilevel Monte Carlo

3) Sequential Monte Carlo

∗I.E. not available by methods of Devroye (1986)

June 26, 2014, Lyon
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InDevroyable could have been UnDevroyable, but the former works well in both

English and French.
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Quasi-Monte Carlo
Monte Carlo simulates randomness. We don’t need that, we just need an

accurate answer. QMC chooses points more uniformly than MC does.
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Fibonacci lattice

MC and two QMC methods in the unit square
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Hammersley sequence

MC yields holes and clumps in random places.

QMC used in graphics by Keller, Niederreiter, Heinrich, Kollig, Shirley,

Grunschloss and others.
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Discrepancies
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0

●

0.6

0.70

b

0

●

0.42

0.45

Local discrepancy at a, b

δ(a) =
1

n

n∑
i=1

1xi∈[0,a) − vol([0,a))

=
13

32
− 0.6× 0.7 = −0.01375

Star discrepancy

D∗n(x1, . . . ,xn) = sup
a∈[0,1)d

|δ(a)|.

I.E., worst of the local discrepancies

Uniformly distributed points

x1,x2, . . . are uniformly distributed (u.d.) iff D∗n(x1,x2, . . . ,xn)→ 0
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Digital nets
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Stratified 1
125 × 1 and 1

25 ×
1
5 and 1

5 ×
1
25 and 1× 1

125 and 1
5 ×

1
5 ×

1
5

Generalizes to more dimensions. Extensible in n.

Constructions by Sobol’, Faure, Niederreiter, Niederreiter-Xing.
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QMC properties
Counterpart to LLN

If f(x) is Riemann integrable and D∗n → 0, then µ̂→ µ

If f is not Riemann integrable then µ̂ 6→ µ for some u.d. points

Counterpart to CLT

|µ̂− µ| 6 D∗n(x1, . . . ,xn)VHK(f)

This is the Koksma-Hlawka inequality. It is a 100% bound on error.

VHK is total variation, in the sense of Hardy and Krause.

June 26, 2014, Lyon
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QMC vs MC
In favor of QMC:

|µ̂− µ| 6 D∗n × VHK(f)

D∗n = O(n−1+ε) is possible

Then |µ̂− µ| = O(n−1+ε) vs n−1/2 for MC

Against QMC:

VHK far harder to estimate than µ, so no error estimate

VHK =∞ for singular integrands

VHK =∞ for most discontinuities (e.g., occlusion)

C × n−1+ε ×Unknown = Unknown

June 26, 2014, Lyon
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QMC in high dimensions
QMC can lose effectiveness in high dimensions

or it can remain effective

It all depends on f

Low effective dimension

If f is nearly a sum of functions of a few variables then QMC remains effective1

E.g. f(x1, x2, . . . , xd)
.
= fa(x1, x2) + fb(x17) + fc(x2, x8, x1000) + · · ·

all functions with only a few inputs

Caflisch, Morokoff & O (1997), Sloan & Woźniakowski (1998)

Low effective dimension is surprisingly common.

1about as effective as the low dimensional component integrations.

June 26, 2014, Lyon
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Randomized QMC

Chop [0, 1]d into b pieces

Randomly shuffle

Chop the pieces and recurse

Apply to all d axes

This method yields “scrambled nets”

June 26, 2014, Lyon
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Scrambled net properties
Each xi ∼ U[0, 1]d, so

E(µ̂) =
1

n

n∑
i=1

∫
f(xi) dxi = µ.

If f is smooth√
Var(µ̂) = O(n−3/2+ε) vs O(n−1+ε) for QMC

If f ∈ L2[0, 1]d then √
Var(µ̂) = o(n−1/2)

even if VHK(f) =∞.

Error estimation

Use independent replications.

June 26, 2014, Lyon
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Summary

|µ| <∞ σ2 <∞ VHK <∞ Smooth1

MC o(1) O(n−1/2) O(n−1/2) O(n−1/2)

QMC × × O(n−1+ε) O(n−1+ε)

RQMC ? o(n−1/2) O(n−1+ε) O(n−3/2+ε)

Table shows error and RMSE rates.

1Finite mean square for ∂f once with respect to each xj .

Higher order nets of Dick exploit greater smoothness and get better rates.

June 26, 2014, Lyon



25th Eurographics Symposium on Rendering 21

Markov chain Monte Carlo
Google scholar: About 136,000 results (0.05 sec) (June 2014)

We may not be able to generate xi ∼ p.

Instead we take

xi = φ(xi−1,ui), ui
iid∼ U[0, 1]s

with φ chosen so that xi
d→ p

Choosing φ

Incredible variety of methods

Estimation

µ = E(f(x) | x ∼ p) µ̂ =
1

n

b+n∑
i=b+1

f(xi)

There are Markov chain laws of large numbers, central limit theorems and

variance estimates. b is ’burn-in’.

June 26, 2014, Lyon
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Metropolis-Hastings
xi represents a light path.

At xi, make a random proposal y from distribution Q(xi → y)

Accept with probability

A(xi → y) = min
(

1,
p(y)

p(xi)
× Q(y → xi)

Q(xi → y)

)
If accepted xi+1 ← y else xi+1 ← xi

Intuition

Large
p(y)

p(xi)
to favor uphill moves

Large
Q(y → xi)

Q(xi → y)
to avoid getting trapped

Symmetric proposals

If Q(x→ y) = Q(y → x) we get A(x→ y) = min(1, p(y)/p(x)), of

Metropolis et. al (1953). June 26, 2014, Lyon
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MCMC issues
Used to good effect by Veach & Guibas (1997)

New work by Hachisuka, Kaplanyan & Dachsbarcher (2014)

combining with multiple IS

Can be very effective. Can also fail to ‘mix’.

E.G.: a random walk on N steps takes O(N2) time to go back and forth.

So exploring a big poorly connected space takes lots of time.

Remedies

Proposals to embed QMC into MCMC.

Chentsov (1967), Liao (1998), Tribble & O (2005), Chen, Dick & O (2011), Chopin

& Gerber (2014), Bornn, de Freitas, Eskelin, Fang & Welling (2013)

Momentum (hybrid or Hamiltonian MC) counters random walk-ness

Originated in physics: Duane, Kennedy, Pendleton & Roweth (1987).

In the STAN statistics software Hoffman & Gelman (2011)

June 26, 2014, Lyon
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Multilevel MC
This is a relatively new Monte Carlo technique.

There were dozens of presentations on it at MCQMC 2014 in Belgium.

Original use for sampling stochastic differential equations

Many more uses now

Key references

Giles (2008)

A 2-level precursor Heinrich (2001)

June 26, 2014, Lyon
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Stochastic process context
• We want to simulate a random S(t) function on t ∈ [0, 1]

• We simulate it at only T positions f(1/T ), f(2/T ), . . . , f(1).

• Get truncated realization ST (t), and Y (T ) = f(ST (·))

• Do N Monte Carlo simulations

Estimator

µ̂T =
1

N

N∑
i=1

Y
(T )
i

Typically E
(
(µ̂T )− µ)2

)
=
c1
N

+
c2
T r

≡ variance + bias2

The cost is C = O(NT )

Root mean squared error is worse than C−1/2 due to bias-variance tradeoff.

E.g., Euler method has r = 2 and optimized RMSE is O(C−1/3) not

O(C−1/2).

June 26, 2014, Lyon
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Multilevel idea
Do simulations at T = T` e.g., T` = 2`, for ` = 0, 1, 2, . . . , L.

Let µ` = E(f(ST`(·)).

Telescoping sums

µL = µ0 + (µ1 − µ0) + (µ2 − µ1) + . . .+ (µL − µL−1) ≡
L∑
`=0

δ`

µ̂L = µ̂0 + µ̂1 − µ0 + µ̂2 − µ1 + . . .+ ̂µL − µL−1 ≡
L∑
`=0

δ̂`

Estimates

δ̂` =
1

N`

N∑̀
i=1

δ̂`,i

Optimal allocation

N` ∝

√
Var(δ̂`)

Cost(δ̂`,i)
.

June 26, 2014, Lyon
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Coupling
To make multilevel work we need

1) Unbiased estimate of µ` − µ`−1

2) Very close paths ST`(t)
.
= ST`−1

(t)

The second step is coupling.

E.G., the path S256(·) should not be sampled independently of S128(·).

Instead it should be a refinement with very small S256(·)− S128(·).

For stochastic differential equations

Do a small number of expensive simulations at very large T

Increase that number as T decreases,

doing a large number of low cost simulations at very small T .

For favorable smoothness and coupling accuracy, RMSE can be O(C−1/2)

June 26, 2014, Lyon
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Other multilevel uses
Continuous time Markov chains

Biochemical kinetics Anderson & Higham (2012)

FPGA’s with T bits

Use 2-bit, 4-bit, 8-bit · · · 64-bit computation

Liu (2012), Brugger et. al (2014)

De-biasing

Rhee & Glynn (2012), McLeish (2011)

Y =

∞∑
`=0

X` µ =

∞∑
`=0

δ` δ` = E(X`)

Choose random L > 1 independent of X`

E(Y ) = E
( ∞∑
`=0

X`1L>`
P(L > `)

)
= E

( L∑
`=0

X`

P(L > `)

)
June 26, 2014, Lyon
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Three new directions
Hera He, Stanford

Optimal mixing in multiple importance sampling

Zhijian He, Tsinghua

Sampling along a Hilbert curve

Kinjal Basu, Stanford

QMC sampling in the triangle

June 26, 2014, Lyon
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Hilbert sampling
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n=256

Hilbert curve samples

H(x) maps [0, 1] onto [0, 1]d. Commonly used in graphics.

If x ∼ U[0, 1] then H(x) ∼ U[0, 1]d

Recently used by Chopin & Gerber (2014) for QMC particle sampling

We will sample xi ∈ [0, 1] and use H(xi) as QMC points.
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Discrepancy
Take xi ∈ [(i− 1)/n, i/n] i = 1, . . . , n (random or not)

D∗n = O(n−1/d)

• QMC gets O(n−1+ε)

• Hilbert gets same rate as sampling on an n = md grid

• Available at any n

• extensible via van der Corput sampling of [0, 1]

Z. He & O (2014)
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Integration
Take xi ∼ U[(i− 1)/n, i/n] i = 1, . . . , n

f is Lipshitz continuous

Var(µ̂) = O(n−1−2/d)

• Better than MC. Optimal rate for Lipshitz.

• Same rate as stratified sampling in an n = md grid

• Available at any n

• van der Corput sampling of [0, 1] gives extensible sequence with this rate.

He & O (2014)

June 26, 2014, Lyon
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Hilbert Integration
Take xi ∼ U[(i− 1)/n, i/n] i = 1, . . . , n

f(x) = g(x) + 1x∈Ωh(x), g, h Lipshitz continuous Ω well behaved set

This models occlusion.

Var(µ̂) = O(n−1−1/d)

• Rate seems new.

• May be useful in low dimensions.

• Available at any n, extensible

He & O (2014)
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QMC in the triangle
We want to integrate over a triangular region∫

4
f(x) dx

or maybe4k ∫
4

∫
4
. . .

∫
4
f(x1, . . . ,xk) dx1 . . . dxk

for a path connecting k triangular regions

Mapping

Arvo (1995) maps [0, 1]2 onto4

More mappings in Devroye (1986) Also Pillards & Cools have 5 mappings.

Area preserving mappings; Jacobian may give infinite variation.

Brandolini, Colzani, GIgante, Travaglini (2013) have discrepancy and

Koksma-Hlawka inequality for4 but · · · no constructions.
June 26, 2014, Lyon
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Triangular van der Corput
n =

∑
k>1 dk4k−1, dk ∈ {0, 1, 2, 3}

Place into subtriangle corresponding to d1

Then sub-subtriangle corresponding to d2, etc.

n→ xn ∈ 4

First 32 and 64 points
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Triangular van der Corput

For n = 4k, D4(x1, . . . ,xn) 6 2√
n
− 1

n

Generally D4(x1, . . . ,xn) 6 12√
n

Result: consistent estimation for any Riemann integrable function on4

Deterministic O(n−1/2) estimation for bounded variation

Basu & O (2013)
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Triangular Kronecker lattice
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Triangular lattice points

1) Take integer grid Z2

2) Rotate clockwise by angle α = 3π/8

3) Shrink by
√

2n

4) Remove points not in4 bounded by (0, 0), (0, 1), (1, 0)

5) Add/remove O(log(n)) points to get exactly n in4

6) Map linearly to desired triangle

D4(x1, . . . ,xn) < C log(n)/n Basu & O (2014) June 26, 2014, Lyon
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In the previous figure angles 3π/8 and 5π/8 work well. Angles π/4 and π/2

are examples of what goes wrong when the angle is poorly chosen. They have

big empty trapezoids.

The good angles are those for which tan(α) is an irrational number ‘badly

approximable’ by rational numbers. The best examples of these are the quadratic

irrationals, any number of the form (a+ b
√
c)/d where a is an integer, b and d

are nonzero integers, and c is a positive integer that is not a perfect square.

Prior to the paper with Basu, one could deduce that good points did exist, but

there was no explicit recipe for them.

June 26, 2014, Lyon
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4 van der Corput
RQMC version gets RMSE O(n−1)

Also base 4 digital nets in [0, 1]k lead to quadrature over4k

That is, sampling for paths

4→ 4→ 4→ · · · → 4

or

4→ �→4→ �→ · · · → �→4

Potential graphics use

Computing form factors or throughput Schröder & Hanrahan (1993)

Hanrahan (1993) Rendering Concepts in Cohen & Wallace (1993)

June 26, 2014, Lyon
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Importance sampling
Often f is singular or only nonzero in a set A with p{A} =

∫
A
p(x) dx = ε.

We need lots of xi in the ‘important’ region.

Choose q(x) with q(x) > 0 whenver f(x)p(x) 6= 0.

µ =

∫
f(x)p(x) dx =

∫ (
f(x)

p(x)

q(x)

)
q(x) dx

Importance sampler

µ̂q =
1

n

n∑
i=1

f(xi)
p(xi)

q(xi)
xi

iid∼ q

Sample from q; correct by multiplying by p/q

∴ we must be able to compute the ratio p/q

NB

Chapter 9 of statweb.stanford.edu/˜owen/mc is on importance

sampling. Chapter 10 includes material on adaptive IS.
June 26, 2014, Lyon
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Importance sampling properties

µ̂q =
1

n

n∑
i=1

f(xi)
p(xi)

q(xi)
xi

iid∼ q

Variance

Var(µ̂q) =
1

n

[∫
f2p2

q2
q−µ2

]
=

1

n

[∫
f2p2

q
−µ2

]
=

1

n

∫
(fp− µq)2

q

Consequences

1) Perfect q is∝ fp (when f > 0)

2) Good q
·∝ fp

3) Watch out for q that gets small

June 26, 2014, Lyon
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Defensive importance sampling
Hesterberg (1988, 1995)

Potential trouble if q � p. So use qα = αp+ (1− α)q

µ̂α = µ̂qα =
1

n

n∑
i=1

f(xi)p(xi)

αp(xi) + (1− α)q(xi)
xi

iid∼ qα

Bounded importance ratio

p(xi)

αp(xi) + (1− α)q(xi)
6

1

α
∀xi

Bounded variance

Var(µ̂α) 6
1

α
Var(µ̂p) +

1

n

1− α
α

µ2

Not much worse than using p.

But could be much worse than q.

June 26, 2014, Lyon
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Multiple importance sampling
Combine J different densities qj , e.g. bidirectional path sampling

Veach & Guibas (1994), Lafortune & Willems (1993)

µ̂α =
1

n

J∑
j=1

nj∑
i=1

f(xij)p(xij)∑J
j=1 αjqj(xij)

xij ∼ qj

This is the ‘balance heuristic’ of Veach & Guibas (1995)

Also a Horvitz-Thompson estimator

Var(µ̂α) 6 Var(µ̂other) +
( 1

minj nj
− 1

n

)
µ2

µ̂other another weighting.

E.G., all weight on qj , get Var(µ̂qj )/αj

June 26, 2014, Lyon
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Adding control variates
We know that ∫

qj(x) dx =

∫
qj(x)

qα(x)
qα(x) dx = 1.

Using this

µ̂α,β =
1

n

J∑
j=1

nj∑
i=1

f(xij)p(xij)−
∑J
j=1 βjqj(xij)

qα(xij)
+

J∑
j=1

βj

Method

β = 0 recovers balance-heuristic.

Optimize over β by least squares to reduce variance further.

Var(µ̂α,β) 6 min
16j6J

Var(µ̂qj )/αj

O & Zhou (2000)

Shaves the multiple of µ2 off of the variance bound

June 26, 2014, Lyon
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Optimizing overα
What if there are 1000’s of densities qj?

Sampling equally can be a waste

We can optimize over α

Convex optimization

The variance is jointly convex inα and β H. He & O (2014) (in preparation)

Adaptive importance sampling, alternates between learningα and using it

Constraints

We can constrain each αj > εj > 0

June 26, 2014, Lyon
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Singularity example
This example was from work in progress with Hera He. It considers a 5

dimensional integrand that just barely has finite mean square.

Preliminary results were shown. At time of writing they are not final enough (still

some checking to do).

What we saw was a large variance reduction from sequential multiple importance

sampling. About 3× 106-fold. Optimizing the weights gave a further variance

reduction of about 5-fold.

The mixture components included some centered near the singularity and some

distractors centered far away. This is to model the setting where we have

imperfect knowledge of where the singularities might be. The gain from adaptive

importance sampling should be roughly equal to the fraction of non-distractor

variance components. When one mixes thousands of sampling distributions of

which a small number are extremely helpful, then adapting α has the most

potential to pay off.

June 26, 2014, Lyon
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Rare event example
This example was from work in progress with Hera He. It featured a rare event

with probability on the order of 10−8.

The model included some importance samplers based on approximate

knowledge of where the rare event takes place as well as some additional

samplers based on incorrect guesses about where the rare event takes place.

This time, mixture importance sampling reduced variance by about 2× 105-fold

and optimizing the mixture component gained a further 7-fold.

June 26, 2014, Lyon



25th Eurographics Symposium on Rendering 48

Thanks
• Wojciech Jarosz & Pieter Peers

Organizers

• Victor Ostromoukhov

Local organization

• Alex Keller, Eugene Fiume, Pat Hanrahan

Additional advice on material to include

• Hera He, Kinjal Basu, Zhijian He

Co-authors

• NSF DMS-0906056

Funding

June 26, 2014, Lyon


